MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2			Mark Scheme	Syllabus	Paper	•		
				GCE AS/A LEVEL – May/June 2013	9702	43			
	Section A								
1	(a)			f space area / volume mass experiences a force		B1 B1	[2]		
	(b)	(i)	force	e proportional to product of two masses e inversely proportional to the square of their separation er reference to point masses <i>or</i> separation >> 'size' of m	asses	M1 M1 A1	[3]		
		(ii)		strength = GM / x^2 or field strength $\propto 1 / x^2$ $p = (7.78 \times 10^8)^2 / (1.5 \times 10^8)^2$ = 27		C1 C1 A1	[3]		
	(c)	(i)	or grav eithe M =	er centripetal force = $mR\omega^2$ and $\omega = 2\pi / T$ centripetal force = mv^2 / R and $v = 2\pi R / T$ vitational force provides the centripetal force er $GMm / R^2 = mR\omega^2$ or $GMm / R^2 = mv^2 / R$ $4\pi^2 R^3 / GT^2$ wwworking to be given in terms of acceleration)		B1 B1 M1 A0	[3]		
		(ii)		= $\{4\pi^2 \times (1.5 \times 10^{11})^3\} / \{6.67 \times 10^{-11} \times (3.16 \times 10^7)^2\}$ = 2.0×10^{30} kg		C1 A1	[2]		
2	(a)	p, \	/ and	e equation pV = constant × T or pV = nRT T explained ues of p , V and T /fixed mass/ n is constant		M1 A1 A1	[3]		
	(b)	(i)		$\times 10^5 \times 2.5 \times 10^3 \times 10^{-6} = n \times 8.31 \times 300$ 0.34 mol		M1 A0	[1]		
		(ii)	3.9>	otal mass/amount of gas $\times ~10^5 \times (2.5$ + 1.6) $\times ~10^3 \times 10^{-6}$ = (0.34 + 0.20) $\times ~8.31 \times ~7$ 360 K	r	C1 A1	[2]		
	(c)	gas woi	s pass rk dor	o opened sed (from cylinder B) to cylinder A ne <u>on</u> gas in cylinder A (and no heating) al energy and hence temperature increase		B1 M1 A1	[3]		

	Pa	ge 3	Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2013 9702		43	
3	(a)	(i) 1.	amplitude = 1.7 cm		A1	[1]
		2.	period = 0.36 cm frequency = 1/0.36 = 2.8 Hz		C1 A1	[2]
			$(-)\omega^2 x \text{ and } \omega = 2\pi/T$ eleration = $(2\pi/0.36)^2 \times 1.7 \times 10^{-2}$ = 5.2 m s ⁻²		C1 M1 A0	[2]
	(b)		straight line, through origin, with negative gradient from $(-1.7 \times 10^{-2}, 5.2)$ to $(1.7 \times 10^{-2}, -5.2)$ not reasonable, do not allow second mark)		M1 A1	[2]
	(c)	or $\frac{1}{2}m\omega^2(x)$ $x_0^2 = 2x^2$	kinetic energy = $\frac{1}{2}m\omega^2(x_0^2 - x^2)$ potential energy = $\frac{1}{2}m\omega^2x^2$ and potential energy = kineti $x_0 - x^2$) = $\frac{1}{2} \times \frac{1}{2}m\omega^2x_0^2$ or $\frac{1}{2}m\omega^2x^2 = \frac{1}{2} \times \frac{1}{2}m\omega^2x_0^2$ $\sqrt{2} = 1.7 / \sqrt{2}$	ic energy	B1 C1	
		= 1.20			A1	[3]
4	(a)		ne moving unit positive charge inity (to the point)		M1 A1	[2]
	(b)		kinetic energy = change in potential energy qV leading to $v = (2Vq/m)^{\frac{1}{2}}$		B1 B1	[2]
	(c)	either	$(2.5 \times 10^5)^2 = 2 \times V \times 9.58 \times 10^7$ V = 330 V this is less than 470 V and so 'no'		C1 M1 A1	[3]
		or	$v = (2 \times 470 \times 9.58 \times 10^7)$ $v = 3.0 \times 10^5 \text{ m s}^{-1}$ this is greater than $2.5 \times 10^5 \text{ m s}^{-1}$ and so 'no'		(C1) (M1) (A1)	
		or	$(2.5 \times 10^5)^2 = 2 \times 470 \times (q/m)$ $(q/m) = 6.6 \times 10^7 \mathrm{C}\mathrm{kg}^{-1}$ this is less than $9.58 \times 10^7 \mathrm{C}\mathrm{kg}^{-1}$ and so 'no'		(C1) (M1) (A1)	

	Page 4			Mark Scheme		Syllabus	Paper	
				GCE AS/A LEV	/EL – May/June 2013	9702	43	
5	(a)			nagnetic) flux normal to force per unit length of 1	long (straight) wire carrying a o 1 N m ⁻¹	current of 1 A	M1 A1	[2]
	(b)	(i)	flux	ensity = $4\pi \times 10^{-7} \times 1.8$ = 6.6×10^{-3} T	$5 \times 10^3 \times 3.5$		C1 A1	[2]
		(ii)	flux	hkage = $6.6 \times 10^{-3} \times 28$ = 3.0×10^{-3} Wb	$8 \times 10^{-4} \times 160$		C1 A1	[2]
	(c)	(i)		ced) e.m.f. proportional ge of (magnetic) flux (lin			M1 A1	[2]
		(ii)	e.m.	= $(2 \times 3.0 \times 10^{-3}) / 0$ = 7.4 × 10 ⁻³ V	.80		C1 A1	[2]
6	(a)	(i)		uce power loss in the co eddy currents/induced			B1 B1	[2]
		(ii)	eithe or	no power loss in trar input power = output			B1	[1]
	(b)	eith		m.s. voltage across loa eak voltage across load	$d = \sqrt{2} \times 243$		C1	[0]
		or		eak voltage across prim eak voltage across loac			A1 (C1) (A1)	[2]
7	(a)	(i)		t frequency of e.m. radi rise to emission of elec	ation ctrons (from the surface)		M1 A1	[2]
		(ii)	E = .	f			C1	
		()		nold frequency = (9.0 >	imes 10 ⁻¹⁹) / (6.63 $ imes$ 10 ⁻³⁴)		•	
				= 1.4 ×	10 ¹⁵ Hz		A1	[2]
	(b)	eith or or		00 nm ≡ 6.6 × 10 ^{–19} J (a	and 600 nm = 5.0 × 10 ¹⁴ Hz) nd 600 nm = 3.3 × 10 ⁻¹⁹ J) m λ_0 = 220 nm (and sodium λ_0	= 520 nm)	M1	
		emission from sodium <u>and</u> zinc						[2]
	(c)	few	er ph	on has larger energy tons per unit time strons emitted per unit ti	ime		M1 M1 A1	[3]

	Page 5		;	Mark Scheme	Syllabus 9702	Paper	
				GCE AS/A LEVEL – May/June 2013	43		
8	(a)			ight) nuclei combine m a more massive nucleus		M1 A1	[2]
	(b)	(i)	∆ <i>m</i> ener	$= 5.33 \times 10^{-3} \times 1.66 \times 10^{-27} \times (3.00 \times 10^{8})^{2}$		C1 C1	
				$= 8.0 \times 10^{-13} \text{ J}$		A1	[3]
		(ii)	•	d/kinetic energy of proton and deuterium must be very l at the nuclei can overcome electrostatic repulsion	arge	B1 B1	[2]
				Section B			
9	(a)	(i)	light-	dependent resistor/LDR		B1	[1]
		(ii)	strair	n gauge		B1	[1]
		(iii)	quar	tz/piezo-electric crystal		B1	[1]
		. ,	•				
	(b)	(i)		tance of thermistor decreases as temperature increses		M1	
			etihe or V _{оит}	$r V_{OUT} = V \times R / (R + R_T)$ current increases and $V_{OUT} = IR$ increases		A1 A1	[3]
		(ii)	eithe or so cł	r change in R_{T} with temperature is non-linear V_{OUT} is not proportional to R_{T} / change in V_{OUT} with F hange is non-linear	R_{T} is non-linear	M1 A1	[2]
10	(a)		•	s: how well the edges (of structures) are defined difference in (degree of) blackening between structures		B1 B1	[2]
	(b)	e.g	large	ering of photos in tissue/no use of a collimator/no use o penumbra on shadow/large area anode/wide beam pixel size	f lead grid		
				two sensible suggestions, 1 each)		B2	[2]
	(c)	(i)	I = I ratio	0e ^{−μ×} = exp(−2.85 × 3.5) / exp(−0.95 × 8.0)		C1 C1	
			1010	$= (4.65 \times 10^{-5}) / (5.00 \times 10^{-4})$ = 0.093		A1	[3]
		(ii)	or	r large difference (in intensities) ratio much less than 1.0 pod contrast		M1 A1	[2]
		(answer given in (c)(ii) must be consistent with ratio given in (c)(i))					

Page 6			6		Mark Scheme	Syllabus	Paper	,
		GCE AS/A LEVEL – May/June 2013 9702					43	
11	(a)	(i)		litude of the carrier v ynchrony) with the d	wave varies lisplacement of the information sign	al	M1 A1	[2]
		(ii)	-	enables shorter aeri	s power required/less attenuation	n/less interference	e B2	[2]
							DZ	[~]
	(b)	(i)		uency = 909 kHz elength = (3.0 × 10 ⁸	³) / (909 × 10 ³)		C1	
			man	$= 330 \mathrm{m}$,, (000 × 10)		A1	[2]
		(ii)	band	dwidth = 18 kHz			A1	[1]
		(iii)	frequ	uency = 9000 Hz			A1	[1]
12	(a)			ved signal, 28 = 10 lថ 10 ⁻⁴ W	g(<i>P</i> / {0.36 × 10 ⁻⁶ })		C1 A1	[2]
	(b)	los	s in fil	ore = 10 lg({9.8 × 10 = 16 dB	0 ⁻³ } / {2.27 × 10 ⁻⁴ })		C1 A1	[2]
	(c)	atte	enuati	on per unit length	= 16 / 85 = 0.19 dB km ⁻¹		A1	[1]